
DEDAUB.COM

Zircuit
ZtakingPool
Smart Contract Security Assessment

March 11, 2024



DEDAUB.COM

ABSTRACT

Dedaub was commissioned to perform a security audit of the Zircuit ZtakingPool
protocol. No major issues were identi�ed and only a centralization consideration was
raised concerning the migration process of the protocol. It should be noted that the
migrator contract, which is one of the main parties of the protocol, had not been
implemented by the time the audit was �nished and only its interface had been de�ned.

PROTOCOL DESCRIPTION

The protocol is designed to be a multi-token staking pool. The point calculations are
being handled o�-chain by the events data emi�ed by the protocol with the �nal goal
being the users to allow their liquidity to bemigrated to Zircuit L2.

The protocol is made up of mainly 3 entities:
● The owner who is mainly responsible for enabling and disabling tokens that can be

staked in the contract and also has the ability to pause the contract.
● The users who can deposit and withdraw tokens from the contract.
● Themigrator contract, that will be bridging users' liquidity upon users' request.

A user should always be able to stake tokens that are enabled and should always be able
to unstake any tokens that were previously staked, including tokens that have been
disabled by the owner after being deposited. This is to ensure that users' funds cannot be
held captive by the owner.

The user is able to initiate the migration by invoking the migrate function directly which
requires a signature from the Zircuit signer to ensure that the user is not being phished
and the _migratorContract that was pointed to is indeed an “o�icial” contract that
Zircuit approves. A signature expiration (_signatureExpiry) is present so that there is a
way to invalidate previously signed _migratorContract, if such a need emerges. User
funds migration can also be executed by the owner using the migrateSig() function

1



DEDAUB.COM

only after the user has explicitly approved this action by signing and submi�ing a
Migratemessage.

The protocol does not support the staking of deflationary tokens, rebasing tokens or
fee-on-transfer tokens. Furthermore, custom smart contract stakers besides multisig
wallets will not be supported by the pool. The majority of multisig wallets will be
compatible with the staking pool.

SETTING & CAVEATS

This audit mainly covers the contracts of the at-the-time private repository
zircuit-labs/zkr-staking of the Zircuit ZtakingPool Protocol at commit
5c0f98d73a0d8e90864d7a207704a44c575d9a41.

Two auditors worked on the codebase for 2 days on the following contracts:

contracts/
├── ZtakingPool.sol
└── interface/

├── IMigrator.sol
├── IWETH.sol
└── IZtakingPool.sol

The audit’s main target is security threats, i.e., what the community understanding
would likely call "hacking", rather than the regular use of the protocol. Functional
correctness (i.e. issues in "regular use") is a secondary consideration. Typically it can
only be covered if we are provided with unambiguous (i.e. full-detail) speci�cations of
what is the expected, correct behavior. In terms of functional correctness, we often
trusted the code’s calculations and interactions, in the absence of any other
speci�cation. Functional correctness relative to low-level calculations (including units,
scaling and quantities returned from external protocols) is generally most e�ectively
done through thorough testing rather than human auditing.

2

https://github.com/zircuit-labs/zkr-staking/tree/main
https://github.com/zircuit-labs/zkr-staking/commit/5c0f98d73a0d8e90864d7a207704a44c575d9a41


DEDAUB.COM

VULNERABILITIES & FUNCTIONAL ISSUES

This section details issues a�ecting the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or di�iculty in exploitation:

Category Description

CRITICAL
Can be pro�tably exploited by any knowledgeable third-party a�acker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

HIGH
Third-party a�ackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM

Examples:
● User or system funds can be lost when third-party systems
misbehave.

● DoS, under speci�c conditions.
● Part of the functionality becomes unusable due to a programming
error.

LOW

Examples:
● Breaking important system invariants but without apparent
consequences.

● Buggy functionality for trusted users where a workaround exists.
● Security issues whichmaymanifest when the system evolves.

Issue resolution includes “dismissed” or “acknowledged” but no action taken, by the
client, or “resolved”, per the auditors.

3



DEDAUB.COM

CRITICAL SEVERITY:

[No critical severity issues]

HIGH SEVERITY:

[No high severity issues]

MEDIUM SEVERITY:

[Nomedium severity issues]

LOW SEVERITY:

ID Description STATUS

L1 Non-ERC20 compliant tokens are not able to bemigrated ACKNOWLEDGED

The ZtakingPool contract implements functionality that allows migration of user
funds by an allowed migratorContract. However, there are ERC20-like tokens that
do not completely follow the ERC20 standards and do not return a high-level value
after approving an amount of tokens to be transferred.

As of Solidity version 0.4.22 and later, the produced code checks the size of the return
value after an external call and reverts the transaction in case the return data is
shorter than expected. As a result, the execution of function _migrate() will fail for
tokens that do not return a boolean value on IERC20::approve calls.

ZtakingPool::_migrate():210

function _migrate(...) internal {
...

4



DEDAUB.COM

for (uint256 i; i < length; ++i) {
// Dedaub: Non-ERC20 compliant tokens won't be able to be
// migrated. Consider using the safeApprove instead.
IERC20(_tokens[i]).approve(_migratorContract, _amounts[i]);

}
...

}

For that reason, we suggest using the safeApprove alternative wrapper which handles
such tokens and ensures that they would be successfully migrated.

Comments:
According to the protocol team, no non-standard ERC20 tokens will be supported for
staking.

5



DEDAUB.COM

CENTRALIZATION ISSUES:

It is often desirable for DeFi protocols to assume no trust in a central authority, including
the protocol’s owner. Even if the owner is reputable, users are more likely to engage with
a protocol that guarantees no catastrophic failure even in the case the owner gets
hacked/compromised. We list issues of this kind below. (These issues should be
considered in the context of usage/deployment, as they are not uncommon. Several
high-pro�le, high-value protocols have signi�cant centralization threats.)

ID Description STATUS

N1 A compromised Zircuit signer would not serve its purpose ACKNOWLEDGED

The Zircuit Signer signs valid migration messages for users who want to migrate using
the migrate() function. The migration through the migrate() function cannot be
completed without this signature. This is intended to protect users from using
unauthorized or malicious migrator contracts, as they could be the victims of a
phishing or similar a�ack. The protocol owners and operators would have to ensure
that the Zircuit signer remains uncompromised (while also operating, most probably as
part of the backend infrastructure), as otherwise it could be used to sign validation
messages for malicious migrator contracts.

6



DEDAUB.COM

OTHER / ADVISORY ISSUES:

This section details issues that are not thought to directly a�ect the functionality of the
project, but we recommend considering them.

ID Description STATUS

A1 Migration’s destination address could be 0 INFO

There is no check in the _migrate() function to ensure that the destination is not
the 0 address. The migrator contract could implement this check, still failing early
would not hurt.

A2 Compiler version considerations INFO

As of solidity version 0.8.20 and later the PUSH0 opcode was introduced. It is already
supported by most EVM chains, but there may be some that have not added support for
it yet. We raise this consideration to warn the developers that any chain besides
Ethereum, on which the protocol may be deployed in the future, has to support this
opcode for the protocol to function properly as it is compiled with version 0.8.24.

A3 Compiler bugs INFO

The code is compiled with Solidity 0.8.24. Version 0.8.24, in particular, has no known
bugs at the time of writing.

7

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1889
https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1889


DEDAUB.COM

DISCLAIMER

The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a su�icient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring through Dedaub
Security Suite.

ABOUT DEDAUB

Dedaub o�ers signi�cant security expertise combined with cu�ing-edge program
analysis technology to secure some of the most prominent protocols in DeFi. The
founders, as well as many of Dedaub's auditors, have a strong academic research
background together with a real-world hacker mentality to secure code. Protocol
blockchain developers hire us for our foundational analysis tools and deep expertise in
program analysis, reverse engineering, DeFi exploits, cryptography and �nancial
mathematics.

8


